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LARGE DEFLECTIONS OF AXISYMMETRIC CIRCULAR
MEMBRANESYt
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Abstract—A nonlinear relaxation method is employed to solve the nonlinear partial differential equations govern-
ing the large deflection response of various axisymmetric circular membranes. The method proposed here is an
iterative approach used in conjunction with finite difference approximations and in its simplest form consists of
only two operators. In principle, this method offers a technique of systematically reducing the errors at each nodal
point for each algebraic equation to some acceptable level. In addition, the method, simple in logic but powerful
in application, is believed to be applicable to solve general types of nonlinear equations. The problems solved
herein include uniformly loaded circular membrane, annular membrane with rigid central disc and annular
membrane with free inner edge. The numerical results obtained in this paper compare quite well with other
results given in the literature. Moreover, many of the results obtained here may be readily used in practical
engineering design.

INTRODUCTION

IN ORDER to obtain a realistic distribution of stresses of membrane-like structures, large
deflection (nonlinear) theory is essential. The deformation of initially flat circular membrane,
described by Foppl-Hencky large deflection theory [1-3], has been the subject of numerous
investigations. Hencky [4] and Chein [5] determined the deflection and stress fields for solid
membrane. Goldberg and Pifko employed both an iterative technique [6] and a power
series approach [7] to obtain the solutions for annular membranes with various inner
boundary conditions. Iberall [8] gave a tractable solution of the circular membrane with a
floating rigid central disc by using certain simplifying approximation. Sherbourne and
Lennox [9] re-examined the same central disc problem by employing a fourth-order
Runge-Kutta process and found that their result differed appreciably from Iberall’s by
almost a factor of two. The reason for this discrepancy is unexplained.

A nonlinear finite difference relaxation method discussed previously [10] is introduced
herein to solve a number of axisymmetric nonlinear membrane problems, i.e. (a) solid
circular membrane, {b) annular membrane with free inner edge and {¢) annular membrane
with central disc. The solution method employed here has been successfully utilized to solve
some very complicated shell problems [11,12] and appears to be extremely effective
relative to other approaches [13, 14].

The present solution method enjoys the following advantages: (a) simplicity of logic
that makes it a trivial task to learn how to employ it, (b) versatility and ease of application,
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1602 RoOBERT KA0 and NICHOLAS PERRONE

(c) insensitivity to starting values as far as convergence is concerned and (d) less computer
storage required relative to other methods especially when one deals with higher order
partial differential equations.

In the next section the governing equations will be enumerated. This will be followed by a
brief description of solution method. In the subsequent sections three different cases of
membrane problems will be examined. In the final section, a discussion and conclusions will
be presented.

BASIC EQUATIONS

Consider a circular membrane with axisymmetric geometry and loading as shown in
Fig. 1. The strain—displacement relations in polar coordinates are
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where i and W are displacement components along radial and normal directions, respec-
tively, and ( ), = (d/dr)( ).
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F1G. 1. Geometry and notation for a uniformly loaded membrane.
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The stress resultants in radial and circumferential directions, N, and Ny, are given in
terms of displacements by

Eh Ekh |~ 1_ i

N,. = 1—_?(8,.4-\’89) == i—:;f[u,,+§w,2,+v;] (23)
Eh Eh {ad _ v_

NB = 1 _v2 (88+V8r) = 1 __v2 [;-&-Vﬁ’r%’zw’z"] (Zb)

where E, v are material constants and A is the thickness of the membrane.
The equation enforcing equilibrium in the radial direction is

(rN),—Np, =0 3)

while the governing equilibrium equation in the transverse direction is as follows:

(rN,w,)..+p = 0. (4)

=E | e

Substitution of equations (2} in equations (3) and (4) yields the following two equilibrium
equations in terms of displacements:

(5)

a:r 2(1 - v2)p
7] - Eh 0

—3 -
— o, W — f- u P
3W,"W;’;. + TE + 2W,,,(u,, + V;) + zw,r [un‘r +(1+v)

o o

_ l-vwi
i+

u o _
'r_z+w9rwsrr+ﬁ'§_ _I"_ =0. (6)

A convenient nondimensional form follows if we write

= r/R, W = wR(pR/Eh)*
it = uR(pR/Eh)}.

=

()

Introducing equation (7)into equations (5)and (6) we obtain the following dimensionless
equilibrium equations:

5
W u u,
3w, w2 + xx + 2w,xx( u,, + v;) + 2w, [u,n +(1+ v)»f} +K =90 (8)
u,, u 1—v wi
u,xx+“f~?+W,xW,xx+w2 - 0 (9)

where
5 d
K=2(1-v) () =5l )
X
Boundary conditions associated with each individual case are given in the corresponding

example problem sections. Equations (8) and (9) together with given boundary conditions
are the basic equations to be solved by the numerical analysis.
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For convenience, stress components, 6r and 6,, are obtained from equations (2) and
put into dimensionless forms as follows:

é, = N,/h = o (p*R2E/h?)} (10a)
Gy = Ny/h = o(p* R’E/h?)* (10b)
where
N LN 10
G =7 3 X ‘N X -
SR LR R (10)
. LN ’ w2 (10d
Og = - - = .
0 1 ___ V2 x vu9x+ 2Wax )

The essence of the problem before us is to calculate w, 6, and o, from the solutions of
equations (8) and (9) with associated proper boundary conditions.

METHOD OF SOLUTION

The basic concept and iteration procedure of the nonlinear relaxation method has been
described in fair detail in Ref. [10] in which three very different, difficult problems were used
to demonstrate its variety of application.

Here only a brief discussion of the method will be given. In order to effectively illustrate
the method procedure, it is considered advisable to use a simple one-dimensional problem
as a model example, while recognizing that there should be no more conceptual difficulty
when it is applied to more complex problems.

Let us consider the following nonlinear differential equation for the domain shown in
Fig. 2

0" =c (1

With replacement of the second derivative at generic point i by its finite difference
approximation, we have

T

a?

(Yi+1_2}’i+%;1)2~6 —0

where a is the mesh spacing and ¢ is a constant.
A so-called residual operator, R,, is introduced by simply replacing the zero term on the

right hand side of the last equation by

R =

1

aZ
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The problem is considered to be solved when, for a given set of values of y;, the residuals
or “error terms” R; at all nodes are zero or acceptably small. Thus, a procedure must be
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F1G. 2. One-dimensional mesh for equation (y")? = c.
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developed to systematically liquidate all R,. To this end, another important operator, the
relaxation operator, is necessary and is derived as follows:

OR,; 4
By = ‘217()’;'+1“2)’i+y1'+1)- (13)

This operator, which is in fact approximate for nonlinear equations, is used to calculate
the total amount of change of function, Ay;, necessary to bring R; toward zero. Therefore

Ay; = — R/(OR:/0y). (14a)
Consequently, the improved value of y; is obtained by
(new) y; = (old) y; +Ay;. (15)

The operation can then move to the next point, say i + 1, by introducing this new y;
whenever it is called upon. Such a point to point operation can be set up systematically
from say left to right. After a complete sweep throughout whole domain, an examination
of a convergence criterion which is introduced is advisable.

Two obvious possibilities as convergence criteria are to require that either the residuals
(R;) or the percentage change of the function (Ay,/y;) are acceptably small at all points. Still
another criterion which because of its efficiency is here adopted is required that the average
absolute change of the function is quite small as follows:

N

)

i=1

9}1{ < 00005 (16)

where N is the total number of all nodal points. When condition (16) is satisfied the iteration
process is halted and the solution printed out.

In order to accelerate convergence, a so-called over-relaxation factor is frequently
introduced in equation (14a) and takes the form

Ay, = —wR,/OR;/0y;) {14b)

in which & may take a value of between 1 and 2. Typically, a value of w of 1-3 cuts computer
time in half.

For simultaneous equations such as equations (8) and (9) considered herein, the solution
procedure is followed in substantially the same manner, requiring only a minor modifica-
tion.

First, equation (8) is considered to be a function of w only by viewing the u function
(which may have a different value from one node to another) as temporarily fixed; the
iteration procedure described above can be readily applied. Next, in equation (9), we take
the w function at all nodes as temporarily fixed ; the equation would accordingly be thought
of as function of u and the same iteration procedure is again applied. Therefore, in the
solution process, these steps are taken in turn with one set of equations and then the other, so
that we are dealing alternatively with a nonlinear system of equations.

The iteration process is continued until both w and u functions at all nodes simultan-
eously satisfy the criterion of (16).
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Uniformly loaded solid circular membrane with fixed edge

The first problem considered is one for which a classical solution exists, viz. the uni-
formly loaded circular membrane with fixed peripheral edge (Fig. 3). Because of radial
symmetry, the problem domain is confined to a generic radius with boundary conditions as
follows:

x =0, u=w, =0 (center) (17a)

x =1, u=w=0 (clamped edge) (17b)
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F16. 3. Finite difference mesh along a generic radius of a uniformly loaded solid circular membrane with
fixed edge.

The problem at hand is to determine the deflection functions w and u which simultan-
eously satisfy equations (8) and (9) in the domain x between O and 1. The solution is obtained
by the nonlinear relaxation method as outlined in the Method of Solution section. When the
average absolute values of percentage changes of the deflections at all mesh points through-
out the domain are less than 0-05 per cent for both u and w functions, the solutions are said
to have converged. In numerical treatment, the domain x between 0 and 1 (Fig. 3)is divided
into twenty evenly spaced mesh points; these are numbered in order from 0 to 20.

Because of symmetry, the central point (x = 0) must be considered carefully. Clearly,
w,, and u are zero at the center so that equation (8), the equilibrium equation, is reduced
appreciably. On the other hand, u,, is not zero but in fact takes on its largest value there.
After obtaining the value of w at all points by sweeping through the field and relaxing each
point in turn, we obtain w, by simply substituting in the aforementioned reduced form of
equation (8). ‘

Alternatively, we could obtain wq by passing a high order polynomial through a number
of mesh points adjacent to the center. This latter technique was used here with a fifth degree
polynomial.

A comparison of the present central deflection and central and edge radial stresses with
Hencky’s classical (but slighly corrected {5]) solution is shown in Table 1.

The computing time required to obtain the solution starting with guessed values that
were of the order of 200 per cent above the correct solution was 10 sec of CPU time on a
GE 635 time-shared computer.

Uniformly loaded annular membrane fixed at outer edge and with a rigid central disc

The configuration of an annular membrane is shown in Fig. 4, consisting of a flexible
annulus connected to a rigid central disc and fixed along the outer edge. The boundary
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TABLE |
Wo Tro Oy edge
Central Central Edge
deflection stress stress
Hencky original [4] 0-666 0:423 0-328
Hencky corrected (5] 0-6536 0431 —
Present solution 0-6541 04289 0-3306

Uniform pressure p —=r
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F1G. 4. Geometry of a uniformly loaded annular membrane fixed at the outer edge and with a central rigid
disc.

conditions at the outer edge are the same as those in the previous example, i.e.
at x =1, w=u=0. (18)

Next, ifthe central discis taken as a free body, then the boundary condition at the connection
between membrane and central disc can be derived by considering the vertical equilibrium
of the forces acting on this free body. Thus we have

prR3+ 27tR0(6,h)%B =0. (19)
r

Replacing the radial stress (6, = Nr/h) by displacement components [equation (2a})] and
introducing nondimensional quantities given in equation (7) and (10), we obtain

at X———xo,

1, u 1
Wt U, +v—|w, +-Kx, =0 (20a)
2 X 4

where K has been defined in equation (9),and x, = Ry/R. Ifit is further assumed that, at the
edge x, the disc and membrane are rigidly attached, then we have

at x = Xxg, u=0. (20b)

Thus, governing equations (8) and (9) together with boundary equations (18) and (20)
complete the formulation of the title problem.

Equation (20a) is the so-called mixed type nonlinear boundary condition in which two
dependent variables(uand w)along with the nonlinear terms are presented. In the theoretical
or numerical analysis, the solution required to satisfy this condition is indeed a formidable
task. However, in the u problem [equation (9)], the u function at x = x,, according to
equation (20b), vanishes (i.e. u, = 0) and the function at the other points in the domain can
be obtained by utilizing a simple relaxation procedure.
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On the other hand, in the w problem w, must satisfy equation (20a) and an attempt to
the solution of wy results in solving a nonlinear problem. To this end, we number the w
function from O towards the right by w,, w, w,, ..., and replace (w,,), by a five point fifth
order polynomial.

1
(W do = z(~3w0+3w1+2w2—3w3 +wy) (21)

wherein g again stands for mesh spacing.

We wish to calculate the value of w, which satisfies boundary condition (20a). Substitut-
ing equation (21) into (20a) and introducing a residual term we obtain the following finite
difference equivalent of (20a):

wao

1
R, = ;a(w 3w+ 3wy + 2w, — 3wy +wy)

1 1
X [ézl—i(— 3wg + 3w, + 2w, — 3w, +wy)? +S] +2Kx0

where
. u
S = (U)o +v—2.
Xg
Equation (22a) is a residual operator and its corresponding relaxation operator can be
straightforwardly obtained as follows:
R,

9
Bwe = " Tegdt T ot dwi+2ws = 3wyt 3812 (22b)

With these two operators set up, a simple relaxation procedure can then be utilized. The
relaxation iteration should be repeated until the desired accuracy for w, is achieved.
Subsequently, we return to the field points to solve the finite difference representation of
equation (8).

In this problem, no “exact”™ previous solutions exist and only two approximate solutions
{8, 9] arc available. Sherbourne and Lennox {9] integrated the differential equations by a
fourth order Runge-Kutta process and obtained a solution, w, = 0-292,} associated with a
particular geometry x, = 0.7 (v = 1). However, Iberall [8] utilized integro-differential
equations with certain simplified approximations and obtained w, = 0-166% for the same
geometry. Iberall’s result differed from Sherbourne and Lennox’s solution by almost a
factor of two. For the same geometry condition, we obtain a value of w, equal to 0-2708
which is quite close to Sherbourne and Lennox’s. Naturally, this good correlation between
the present result and Sherbourne and Lennox’s does cast a shadow of doubt on Iberall’s
solution.

The maximum stress for the case considered here occurs at the connection between
membraneandcentraldisc(r = R,)inthedirectionalongradius. The value of this maximum
stress divided by central stress of solid circular membrane is plotted in Fig. 5 for x,
(= Ry/R) ranging from 0 to 0-8. Clearly, the most undesirable situation occurs when the

+ The values of w reported here are the average values obtained from an interpretation of results given in
Fig. 3 of Ref. [9].
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T max (at center of solid
circular membrane)

=0.4289 (p°R°E /H2)"3

fo=stress concentration factor = & (at r=R.)/
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FiG. 5. Stress concentration factors of the circular membrane with rigid central disc (Fig. 4), v = 0-3.

disc radius is about one-quarter the outer radius; the associated stress increase over the
solid membrane case is almost 40 per cent.

Uniformly loaded annular membrane fixed at outer edge and free from tractions at the inner
edge

The configuration of this problem is sketched in Fig. 6 in which boundary conditions at
both edges are as follows:

atx = 1 w=u=0 (fixed edge) (23a)
1
at x = x, Ew,2x+u,x+vE =0 (free edge). (23b)
X

Once again we encounter a mixed type boundary condition, equation (23b), which is a
little simpler than that treated in the previous example. The same procedure as outlined in
the previous case can also be employed to obtain the solution of this problem.

A comparison of the present normal deflections with the power series solutionst
obtained by Pifko and Goldberg [7] is shown in Fig. 7. Undoubtedly, these two solutions
are in excellent agreement. Here, it should be pointed out that the formulations used by

Z I I LX W 0 IO S B O

X0

5
j?_‘ W
i

Fi16. 6. Geometry of a uniformly loaded annular membrane fixed at outer edge and free at the inner edge.

t A positive truncation error was introduced in each case of Pifko and Goldberg’s w solutions, which resulted
from approximating the solution by neglecting the higher order terms in the power series expansion. Therefore the
results he obtained are the lower bound solutions. The present results are consistently above his results.



1610 ROBERT KAO and NICHOLAS PERRONE

08
X, =0!
/ Xo=0.4
\\\\ e
o8 O %,=0.6
&
AN
\\\\\
w 04L— \\\\
N
Present solution \\
ol ™~ — Power series sotution [7] N\
L I | |
o 02 0.4 06 o8 Lo

X

F16. 7. Comparison of normal deflections for the annular membrane shown in Fig. 6 with power series
solutions in Ref. [7] (v = 0.3).

Pifko and Goldberg differ appreciably from the one used here and additionally, the two
solution methods, as one might expect, are completely different. This evidence suggests the
validity of the differential equations derived herein, the computer program developed and
methodology of the nonlinear relaxation technique utilized.

In practical engineering design, the stress concentration factor at the free edge is
usually of interest. Therefore, the definition of this factor as well as its value for different x,,
ranging from 0-1 to 0-6 are given and shown in Fig. 8 These results are presented in a
convenient form for immediate engineering utility.

4.0

Cg.max | Ot center of solid
circular membrane)

~0.4289 (p?R2E /n%)3

20

1, = stress concentration factor = &g (at
free edge) / 0p.macenter of solid membrane)

X0

Fi16. 8. Stress concentration factors of the membrane shown in Fig. 6 (v = 0.3).
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As can be seen from the figure the stress concentration factor as a result of the circular
hole is very significant, reaching a value of about 31 when the hole radius is i the outside
radius.

CONCLUSIONS

A nonlinear relaxation method used in conjunction with finite difference approximations
is applied to solve the geometrically nonlinear circular membrane equations. The method
utilized here is similar to the one used by Shaw and Perrone [15] except for the fact that
carry-over factors were utilized in the earlier analysis. In their approach, the carry-over
factors were used to calculate approximate induced residuals in the neighborhood of the
point operated. The derivation of these factors becomes very tedius for more complex
problems (for example, see Ref. [15]) and their removal should greatly enhance the usefulness
of the method.

In principle, the current method offers a technique of systematically reducing the errors
at each nodal point for each algebraic equation to some acceptable level by means of residual
and relaxation operators.

The essential advantages of this method are: (a) versatility and ease of application, (b)
simplicity of logic that makes it a trivial task to learn how to employ it, (c) accuracy of the
method which is limited only by errors associated with finite difference approximations,
(d) insensitivity to starting value as far as convergence is concerned, at least for the problems
considered here and (e} less computer storage required relative to other methods especially
when one deals with higher order partial differential equations.

In order to increase the speed of convergence, an over-relaxation factor is introduced
by which the computing time is cut down to about one-half of the original, a factor of about
1-3 appears to be a judicious choice.

In this paper, three example problems of axisymmetric circular membranes are treated :
(a) clamped solid circular membrane, (b) clamped annular membrane with a floating
central disc and (c) clamped annular membrane with free inner edge. For the solid mem-
brane, excellent correlation is obtained between the present solution and Hencky’s corrected
solution {5].

In the second example problem, the annular membrane with a floating central disc, we
encounter a mixed type nonlinear boundary condition at the juncture of the membrane and
disc. Solution to this type of problem is a formidable task and accordingly, a special treat-
ment at the inner edge of the membrane is necessary ; the boundary condition is treated as a
nonlinear problem and nonlinear relaxation method is utilized to obtain the deflection at
this edge. For this problem no “exact’ solution exists and only two approximate solutions
[8,9] are available. The present solution is quite close to Sherbourne and Lennox’s [9]
while differing from Iberall’s [8] by almost a factor of two.

In the third example, a membrane with a “hole”, we encounter again a mixed type
nonlinear boundary condition. The same technique employed in the previous case is also
applied here. The present solutions compare fairly well with Pifko and Goldberg’s power
series solutions [7] which actually are lower bound solutions. The present results are
consistently above the solutions in Ref. [7]. For practical design purposes, a series of stress
concentration factors at the juncture of the membrane and disc (Fig. 4), and at the free edge
(Fig. 6) are plotted in Figs. 5 and 8, respectively ; these figures might be readily used directly
by engineers.
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AbcTpakT—1pUMeEHAETCA HeNMHEHHbIA MeTOJ pPejakcaliMi ¢ LeNbio pelleHusl HenuHerHbix auddepe-
HLMAbHBIX YPABHEHHI B YACTHLIX MPOUIBOAHBIX, OTIMCHIBAIOLMX MOBEASHUE PA3HBIX, OCECHMMETPHYECKHUX
Kpyrabix mMemOpan rpu Goablimx nporuwbax. Ilpeanaraemelit 3aeck METOA SBIAETCH MTEPAUMOHHBIM
cnocoboMm, UCNOIL30BAHHBLIM OJHOBPEMEHHO C ANMMIPOKCMMALIMEN B KOHEUHbIX pa3HOCTSAX. B croeit Haitbonee
npocToit PopMe I3TOT METOA COCTOMT W3 ABYX OMNepaTopoB. B mpunuune, MeTon naer crnocob cuctemat-
WYECKM OTPaHUYEBAIOLIMIA TIOTPEMWIHOCTH B KAXKAON Y3JIOBOH TOYKE ANA Kaxaoro aarebpauyeckoro ypasH-
€HHA, HAa HEKOTOPOM AOMyckaemoM yposHe. Kpome Toro, mpocroit 1o JOruke HO OIUIMYHBIR C TOYKM
3peHmns TIPUMEHAEMOCTH, METOA MOXHO YNOTPeOHUTB U1t pacyeTa OOLINX THIIOB HEJTMHEHHBIX YPABHECHHUH.
3agauu, pelweHbl 30€ch, KACAIOTCA PABHOMEPHO HATPYXEHHON! Xpyriioli MemGpaHbl, KosbleBOH MeMOpaHs!
C XECTKUM, UEHTPaJIbHBIM JMCKOM M KOJIbLEBOI MeMOpaHbl co CBOOOAHBIM BHYTPEHHbBIM KpaeM. Tlonyde-
HHble B paboTe, YMCNEHHbIE PE3YNbTaThl CPABHUBAIOTCA COBCEM aKypaTHO ¢ APYTMMH pe3yJbTaTamH
W3BECTHBIMK B uTepaType .Jlanee, 60JLIIMHCTBO PE3YbTATOB, PelIEHbIX B paboTe, MOXHO HETKO HCNO-
NIL30BaTh B MHXKEHEPHOMN NIPAKTHKE.



